

Turn CO, into value by using CO, as feedstock

Olivine reacts with CO₂ - How does it work?

Reduce & Reuse CO₂

Green Minerals is a process which a factory can integrate within its current production process: capturing CO₂ and add the 'mineral CO₂ additive' to its resources, materials and products. A circular manufacturing process, producing CO₂ based materials.

CO, based materials

Concrete, plastics and paper are three examples of Green Minerals applications, in which CO_2 is captured and permanent stored in materials. Mineral CO_2 additive can be approached as useful addition or replaced filler to improve properties.

Partners

Brightlands Innovation Factory facilitates to start-up

Creative assistance: communication & design by Regeneration Design

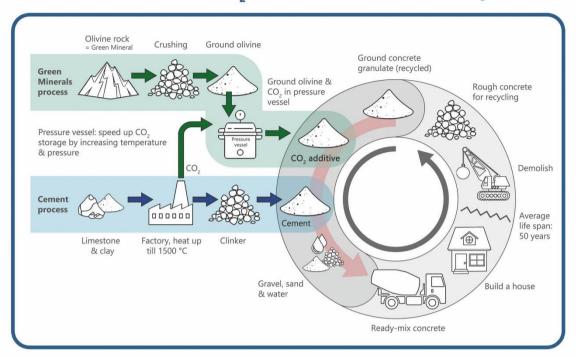
Process- and knowledge exchange with **SCW Systems**, clean energy technology

Imagine...

...living in this house built with CO₂

...sitting on this chair produced with CO₂

...reading this book made with CO₂



CO₂ Concrete

Functional filler to increase packing density

How to reduce & reuse CO, in the construction industry

Opportunities

3D printing - First prototype & testing

Enhancing material properties in **conventional concrete** as well as enabling **new cementitious binder concepts**

For even further reduced carbon-footprint of recycled concrete

As precursor in geopolymer concrete (GPC)

Partners

CO₂ reduction with geopolymer concrete

GPC is another name for Alkali Activated Cementitious Material (AACM) The technology is a logical extension of conventional concrete

Why:

Less CO₂ emissions by increased versatility of types of raw materials

Increased suitability towards locally available- and circular feedstocks

Enhanced technical properties of the concrete in respect to acid-resistance, abrasion-resistance and fire-resistance

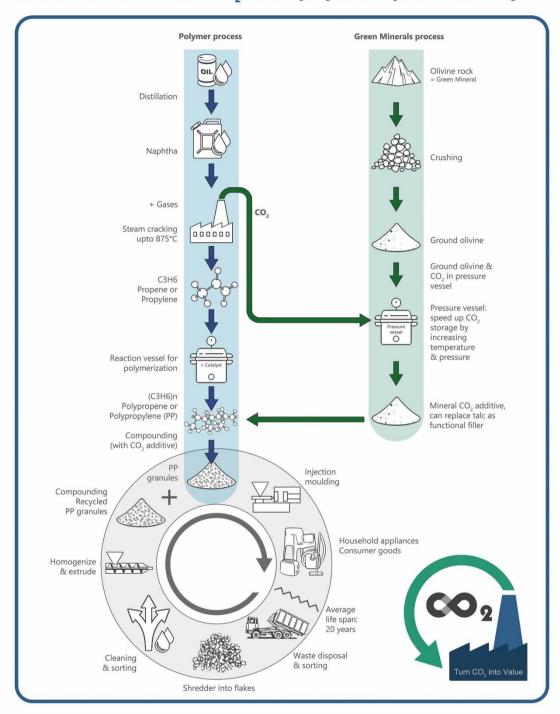
How:

2 components-binder system technology: Precursor + Activator

Chemical reaction:

polymerization instead of hydratation yielding CASH instead of CSH

Processing of GPC is the same as conventional concrete; the same machines & tools can be used



CO₂ Plastic

Replacement of talc as functional filler

How to reduce & reuse CO₂ in the polymer & plastic industry

Opportunities

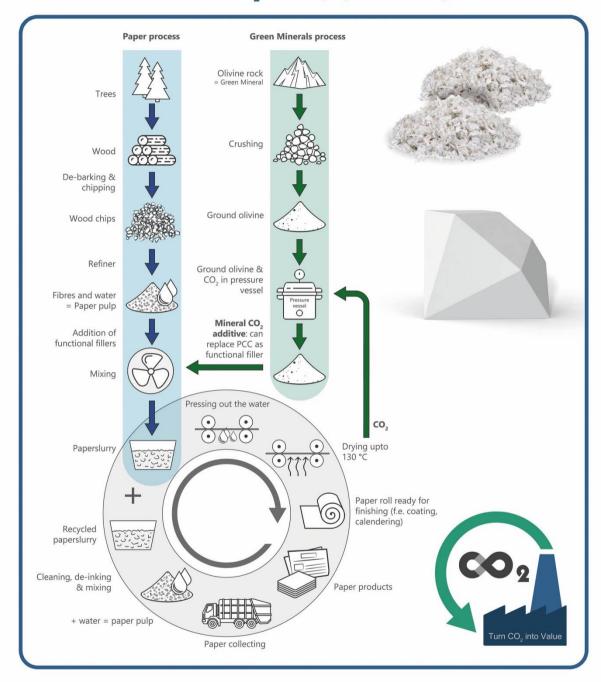
3D printing - First prototype & testing

Replacement of **talc / wollastonite** in polymers like PP, PE, PVC, ABS & thermosetting compounds

Biobased polymers + CO, based fillers

Recycling industry

Partners



CO₂ Paper

Replacement of PCC as functional filler

How to reduce & reuse CO, in the paper industry

Opportunities

Replacement of Precipitated Calcium Carbonate (PCC) PCC is used for producing high quality paper and paperboard, but requires an energy intensive making process. Mainly 1/3 PCC is used in paper = approx. 16% CO₂ in paper

Paper sludge can be used to convert to Green Gas & CO, Use this CO, to make 'CO, negative paper'

Add 'Mineral CO₂ additive' in the **recycling** process

Partners

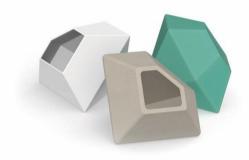
PAPIER EN KARTON

About us

History

Green Minerals was founded in 2011 by Pol Knops, a physicist who has been doing research of CO₂ storage by mineralization for 8 years. The goal was initially to capture CO₂. The project became more interesting when Pol discovered that particular products with a functional application could be made.

Stage


We are searching for sustainable, **long-term partners**. To **co-develop** and **validate** the beneficial use of CO₂ based materials in the **various markets**.

The product is 2/3 Magnesite and 1/3 Amorphous Silica, it consists of **very small solid particles** with beneficial use in **paper, polymer and concrete**. We are eager to validate the use in various applications in the supply chain.

Contact

info@green-minerals.nl

MSc. Pol Knops Rijksstraatweg 128 NL 7391 MG Twello Tel: +31 6 5130 4842

Green Minerals

www.green-minerals.nl

Design | Visuals | Infographics | Lay-out

Regeneration Design assists scientists and companies with clarifying their technology or idea by design, visualization and storytelling so the innovation will faster find its way to the market.

Klaske Postma

klaske@regenerationdesign.nl +31 (0)6 41 34 17 63 Larixlaan 7, 1231 BL Loosdrecht The Netherlands

